Login / Register

Username:


Password: [Lost?]



New User? Click here for your FREE subscription



Physical Therapists & PT Assistants
Physical Therapists & PT Assistants Post a healthcare recruiting ad

Follow Us


NEWS-Line on Twitter NEWS-Line on Facebook NEWS-Line on Google+ NEWS-Line on LinkedIn NEWS-Line on Pinterest


Physical Therapist Conferences &
Educational Opportunities




NIH Investigates Multidrug-Resistant Bacterium Emerging In Community Settings | NEWS-Line for Physical Therapists & PT Assistants

NIH Investigates Multidrug-Resistant Bacterium Emerging In Community Settings


Source:

New “hypervirulent” strains of the bacterium Klebsiella pneumoniae have emerged in healthy people in community settings, prompting a National Institutes of Health research group to investigate how the human immune system defends against infection. After exposing the strains to components of the human immune system in a laboratory “test tube” setting, scientists found that some strains were more likely to survive in blood and serum than others, and that neutrophils (white blood cells) are more likely to ingest and kill some strains than others. The study, published in mBio, was led by researchers at NIH’s National Institute of Allergy and Infectious Diseases (NIAID).

“This important study is among the first to investigate interaction of these emergent Klebsiella pneumoniae strains with components of human host defense,” Acting NIAID Director Hugh Auchincloss, M.D., said. “The work reflects the strength of NIAID’s Intramural Research Program. Having stable research teams with established collaborations allows investigators to draw on prior work and quickly inform peers about new, highly relevant public health topics.”

More than a century ago scientists identified K. pneumoniae as a cause of serious, often fatal, human infections, mostly in people already ill or with weakened immune systems and especially people in hospitals. Over a span of many decades, some strains developed resistance to multiple antibiotics, and became difficult to treat. This bacterium, often called classical Klebsiella pneumoniae (cKp), ranks as the third most common pathogen isolated from hospital bloodstream infections. Certain other Klebsiella pneumoniae strains cause severe infections in healthy people in community settings (outside of hospitals) even though they are not multidrug-resistant. They are known as hypervirulent Klebsiella pneumoniae, or hvKp. More recently, strains with both multidrug resistance and hypervirulence characteristics, so-called MDR hvKp, have emerged in both settings.

NIAID scientists have studied this general phenomenon before. In the early 2000s they observed—and actively investigated—virulent strains of methicillin-resistant Staphylococcus aureus (MRSA) bacteria that had emerged in U.S. community settings and caused widespread infections in otherwise healthy people.

Now, the same NIAID research group at Rocky Mountain Laboratories in Hamilton, Montana, is investigating similar questions about the new Klebsiella strains, such as whether the microbes can evade human immune system defenses. Their findings were unexpected: the hvKp strains were more likely to survive in blood and serum than MDR hvKp strains. And neutrophils had ingested less than 5% of the hvKp strains, but more than 67% of the MDR hvKp strains—most of which were killed.

The researchers also developed an antibody serum specifically designed to help neutrophils ingest and kill two selected hvKp and two selected MDR hvKp strains. The antiserum worked, though not uniformly in the hvKp strains. These findings suggest that a vaccine approach for prevention/treatment of infections is feasible.

Based on the findings, the researchers suggest that the potential severity of infection caused by MDR hvKp likely falls in between the classical and hypervirulent forms. The work also suggests that the widely used classification of K. pneumoniae into cKp or hvKp should be reconsidered.

The researchers also are exploring why MDR hvKp are more susceptible to human immune defenses than hvKp: Is this due to a change in surface structure caused by genetic mutation? Or perhaps because combining components of hypervirulence and antibiotic resistance reduces the bacterium's ability to replicate and survive in a competitive environment.

As a next step, the research team will determine the factors involved in MDR hvKp susceptibility to the body’s immune defenses using mouse infection models. Ultimately, this knowledge could inform treatment strategies to prevent or decrease disease severity.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID website.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit www.nih.gov..

NIH…Turning Discovery Into Health®

References
F DeLeo et al. Interaction of multidrug-resistant hypervirulent Klebsiella pneumoniae with components of human innate host defense. mBio DOI: 10.1128/mbio.01949-23 (2023).

Source: National Institutes of Health (NIH)

Image: National Institute of Allergy and Infectious Diseases (NIAID)

Pictured: Microscopic image of a human neutrophil (red) containing ingested Klebsiella pneumoniae (purple).




Post not cached because it doesn't exist


Share This!


Physical Therapist Jobs


Physical Therapist - 1,500 sign on bonus!

Florida Orthopaedic Institute
Sun City Center, Florida

Physical Therapist

Eagle Center Physical Therapy
Eagle River, Alaska

Certified Hand Therapist

Farmington Health Center
Salt Lake City, Utah

Physical Therapist - Outpatient

Choice Physical Therapy
Corning, New York

Physical Therapist (PT) - Full Time & Part Time

Integrated Musculoskeletal & Spine Group
Freeport, New York

Physical Therapist - $75k per year - $5,000 Sign-on Bonus - Recent Graduates Welcome! Diem positions available

Elizabeth Seton Children’s
Yonkers, New York

More Jobs
(Dismiss) Thank you for visiting NEWS-Line! Please sign up, login, or follow us on your favorite social networks
to receive custom tailored eNews, job listings, and educational opportunities for your specific profession.